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Summary

The present work deals with linearized modal analysis of the combined flexural-torsional vibration of
simply supported steel beams with open monosymmetric cross-sections, acted upon by a load of constant
magnitude, traversing its span eccentrically with constant velocity. After thoroughly investigating the free
vibrations of the structure, which simulates a commonly used highway bridge, its forced motions under the
aforementioned loading type are investigated. Utilizing the capabilities of symbolic computations within
modern mathematical software, the effect of the most significant geometrical and cross-sectional beam
properties on the free vibration characteristics of the beam are established and presented in tabular and
graphical form. Moreover, adopting realistic values of the simplified vehicle model adopted, the effects of
eccentricity, load magnitude and corresponding velocity are assessed and interesting conclusions for
structural design purposes are drawn. The proposed methodology may serve as a starting point for further
in-depth study of the whole scientific subject, in which sophisticated vehicle models, energy dissipation and
more complicated bridge models may be used.
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1. Introduction

The linearized as well as nonlinear vibration analysis of beams or beam-like structural elements
has been and continues to be a subject of immense importance in engineering science, embracing a
wide class of problems. Depending on the assumptions, the type of analysis, the overall beam
characteristics and the kind of loading or excitation, a huge number of publications containing a
variety of different approaches have been reported in the relevant literature. For 150 years,
engineers have been trying to present reliable solutions for such a multi-parameter problem by
using two different methods. The first method is to perform tests, and the second is that of pure
theoretical investigation. In recent years, transport engineering has experienced serious advances
characterized by increasingly higher speeds and weights of vehicles, as a result of which vibrations
and dynamic stresses larger than ever before have been developed.
The problem of moving loads was first considered approximately for the case of a

girder with negligible mass, compared to the mass of a single moving load of constant
magnitude by Stokes [1] and Zimmermann [2]. Afterwards, the case of a moving load with
negligible mass compared to the mass of the girder was studied by Krylov [3], Timoshenko [4] and
Lowan [5].
The complete problem, including both these parameters, was studied by other investigators

such as Steuding [6], Schallemcamp [7], and Bolotin [8]. A very thorough treatise on the dynamic
response of several types of railway bridges, traversed by steam locomotives was presented by
Inglis [9] using harmonic analysis. Interesting analyses were also presented by Hillerborg [10]
using Fourier’s analysis and by Biggs et al. [11] using Iglis’s technique. The problem of the
dynamic response of bridges under moving loads is reviewed in detail by Timoshenko [12], and
later on by Kolousek [13]. One should also mention the extended review reported by Fryba [14] in
his excellent monograph on this subject. Based on his text Fryba [15,16] studied the effects of the
constant speed and damping on the response of a beam.
Vehicle-induced vibrations of bridges and other structures that can be simulated as beams have

been extensively investigated by a great number of researchers [17,18], dealing with the effect of
various parameters on the 3D motion of these structures, such as vehicle suspension design [19],
vehicle weight and speed, damping, matching between bridge and vehicle natural frequencies,
deck roughness, various irregularities, etc. [20–26].
Undoubtedly, the whole matter will remain a major topic for further scientific research, since

continuing developments in design and material technology enable the realization and
construction of lighter and more slender structures, with increased vulnerability to dynamic
and especially moving loads.
To the knowledge of the authors however, there seems to be a limited number of works dealing

with the combined lateral–torsional vibrations of beams under moving loads [27–29], although
simply supported bridges with open monosymmetric—mainly steel—cross-sections with two
lanes, are very common in the national road network of many countries, and are quite sensitive to
the above type of motions.
The present work examines the combined lateral–flexural motions of steel beams with open

cross-sections and only one symmetry axis, acted upon by an eccentrically moving load of
constant magnitude and velocity, simulating the passage of a simplified single vehicle load across
one lane of a beam-structure, as described earlier.
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In the present paper, without restriction of the method’s generality, damping is neglected while
the whole procedure may without particular difficulties be applied and extended to multi-span
beams accounting for energy dissipation. Numerical results in tabular and graphical form reveal
the effect of the geometrical and cross-sectional beam properties on the natural frequencies;
thereafter the forced motions dealt with are thoroughly discussed and the effect of the loading
parameters (i.e. magnitude, eccentricity and velocity) are fully assessed.
2. Mathematical formulation

2.1. Introductory concepts

The equilibrium equations of a simply supported steel beam, with an open cross-section and
only one axis of symmetry, as depicted in Fig. 1, are as follows [30]:

EJyw0000
S ¼ qz;

EJzu0000S ¼ qy;

ECMW0000 � GJdW
00
¼ mx: ð1a2cÞ

In the above equations, movements wS; uS, and external forces qy; qz act along the main axes of
the weight centre, while torsional moment mx acts around the shear centre.
In addition, the cross-sectional and material properties as well as the displacement components

involved are defined by

Jy, Jz: moments of inertia with respect to principal axes y and z, respectively,
Jd: Saint–Venant torsional moment of inertia,
E, G: elasticity and shear moduli,
CM: warping coefficient with respect to the shear centre M,
W: rotation of the cross-section.

Note that mx includes the possible external torsional moment and, also, that produced by the
loads qy; qz. After the deformation of the beam, the loads qy; qz produce a new torsional moment
and so the final one �mx includes the above-mentioned mx, and also the torsional moment caused
by the change of the distance between the shear centre and the weight centre after the cross-
section’s turn by angle W.
Fig. 1. Geometry and sign convention of a simply supported steel beam with open monosymmetric cross-section.
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So, the final torsional moment acting becomes

�mx ¼ mx þ zMEJzu0000S þ zMWEJyw0000
S ð2Þ

while the coordinates of the new position of the weight centre become

u ¼ uS þ zMW;

w ¼ wS: ð3a;bÞ

Eqs. (1), because of (2) and (3), become

EJyw0000 ¼ qz;

EJzu0000 þ EJzzMW0000 ¼ qy;

ECSW
0000

þ EJzzMu0000 � GJdW
00
¼ mx: ð4a2cÞ
2.2. Free vibration analysis

Now consider the free undamped torsional–lateral vibration of a simply supported
steel beam, with an open cross-section and only one symmetry axis, as depicted in Fig. 1,
where also the geometry of the structure and the adopted sign convention are also shown. Using
Eq. (4), one can easily find the following differential equations governing the motion under
consideration

EJyw0000 þ m €w ¼ 0;

EJzu0000 þ EJzzMW0000 þ m€u ¼ 0;

ECSW
0000

þ EJzzMu0000 � GJdW
00
þYM

€W ¼ 0 ð5a2cÞ

where the prime denotes differentiation with respect to x, while the dot with respect to time t. In
these equations, the following new symbols are used:

zM: distance between gravity centre S and shear centre M,
YM: polar moment of inertia of the mass of the cross-section,
CS: warping coefficient with respect to the centre of gravity S,
u, w: deformations of S along y and z axes, respectively.

Evidently, the vertical eigenvibrations are independent of the horizontal and flexural ones,
which are in fact coupled, and hence, applying modal analysis, one may write that

wðx; tÞ ¼ �wðxÞ Ak sin okt þ Bk cos oktð Þ;

Wðx; tÞ ¼ �WðxÞ As sin ost þ Bs cos ostð Þ;

uðx; tÞ ¼ �uðxÞ As sin ost þ Bs cos ostð Þ; ð6a2cÞ

where �wðxÞ; �WðxÞ; �uðxÞ are the corresponding shape functions and ok; os the circular frequencies
of the vertical motion and the coupled lateral–torsional motion respectively. In the sequel, the
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in-plane vertical dynamic deflection w(x,t) can be expressed as

wðx; tÞ ¼
X

n

sin
npx

‘
Akn sin oknt þ Bkn cos okntð Þ;

o2
kn ¼

n4p4EJy

m‘4
; n ¼ 1; 2; . . . ð7Þ

while combining the coupled equations (5b) and (5c) one gets

�uðxÞ ¼
1

mzMo2
s

�ECS
�W
0000

þ EJzz
2
M
�W
0000

þ GJd
�W
00
þYMo2

s
�W

� �
ð8Þ

Since CM ¼ CS � z2MJz and after cumbersome elaboration, the following differential equation
of eighth order with respect to the shape function of the rotation �Wðx; tÞ is reached:

a �W
ð8Þ

þ b �W
ð6Þ

þ g �W
ð4Þ

þ d �W
ð2Þ

þ � �W ¼ 0; ð9Þ

where

a ¼ � E2JzCM ;

b ¼ EGJzJd

g ¼ EJzYMo2
s þ ECMmo2

s þ EJzz
2
Mmo2

s;

d ¼ � GJdmo2
s;

� ¼ �YMmo4
s; ð10Þ

the characteristic polynomial equation used for the solution of Eq. (9) is

ar8 þ br6 þ gr4 þ dr2 þ � ¼ 0 ð11Þ

while the boundary conditions valid for a simply supported beam are

Wð0Þ ¼ Wð‘Þ ¼ W00ð0Þ ¼ W00ð‘Þ ¼ 0;

uð0Þ ¼ uð‘Þ ¼ u00ð0Þ ¼ u00ð‘Þ ¼ 0:
ð12Þ

The general solution of Eq. (9), yielding the expression of the shape function associated with the
cross-sectional rotation, can be written in series form as follows:

�WðxÞ ¼
X

i

kie
aix sin bixð Þ þ cosðbixÞ½ � þ

X
l

kle
rlx; i þ l ¼ 8; ð13Þ

where ai 	 jbi and 	 rl are the complex conjugate and real roots of Eq. (11) respectively, while
ki; kl are eight coefficients to be determined. Substituting expression (13) into Eq. (9) and taking
into account the aforementioned boundary conditions one obtains a linear homogeneous system
with respect to coefficients kq ðq ¼ 1; . . . ; 8Þ. This can be achieved utilizing advanced symbolic
manipulations and modern mathematical software [31], despite the rather simplified type of
analysis.
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Fig. 2. The beam of Fig. 1 traversed by a constant force Pz with constant velocity u and eccentricity e.

Fig. 3. Variation of the three first out-of-plane flexural/torsional circular frequencies osi; i ¼ 1; . . . ; 3 due to the change

of various cross-sectional properties of the beam.

G.T. Michaltsos et al. / Journal of Sound and Vibration 280 (2005) 479–494484
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Thus, one may write

�Wðx; tÞ ¼
X

n

Cn Asn sin osnt þ Bsn cos osntð Þ;

�uðx; tÞ ¼
X

n

Zn Asn sin osnt þ Bsn cos osntð Þ; ð14Þ

where Cn ¼ �WðxÞ and Zn ¼ �uðxÞ are the shape functions of the rotation and lateral deflection
respectively, to be analytically computed or at least properly numerically approximated, a task
performed also symbolically. Using also the notation X nðxÞ ¼ �wðxÞ, it can be easily proven that the
orthogonality conditions governing the free motions dealt with are given by the following relations:Z ‘

0

X nX m dx ¼ 0 for nam;

m

Z ‘

0

ZnZm dx þYM

Z ‘

0

CnCmdx ¼ 0 for nam: ð15Þ

2.3. Forced vibration analysis

If the simply supported steel beam under consideration is traversed by a moving load Pz of
constant magnitude and constant velocity u acting eccentrically, as schematically depicted in
Fig. 2, the corresponding undamped forced vibrations are governed by the following set of
Table 1

Maximum midspan dynamic deformations of the beam considered for all combinations of the values of the chosen

loading parameters

Pz (kp) e (m) u (m/s) max wð‘
2
; tÞ (m) max uð‘

2
; tÞ (m) max yð‘

2
; tÞ (rad)

1500 1 20 0.00098 �0.00031 0.00021

25 0.00113 �0.00036 0.00025

30 0.00124 �0.00040 0.00028

35 0.00133 �0.00044 0.00030

40 0.00138 �0.00046 0.00031

2 20 0.00098 �0.00062 0.00043

25 0.00113 �0.00072 0.00050

30 0.00124 �0.00081 0.00055

35 0.00133 �0.00088 0.00060

40 0.00138 �0.00093 0.00062

50000 1 10 0.02958 �0.01040 0.00734

15 0.03148 �0.01110 0.00779

20 0.03251 �0.01028 0.00714

25 0.03765 �0.01202 0.00825

2 10 0.02958 �0.02079 0.01468

15 0.03148 �0.02221 0.01559

20 0.03251 �0.02057 0.01429

25 0.03765 �0.02405 0.01560
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differential equations of motion:

EJyw0000 þ m €w ¼ Pzdðx � aÞ;

EJzu0000 þ EJzzMW0000 þ m€u ¼ 0;

ECSW
0000

þ EJzzMu0000 � GJdW
00
þYM

€W ¼ ePzdðx � aÞ; ð16Þ

where a ¼ ut (is the load position) and d the Dirac function.
Seeking a solution in modal form, prescribed by

wðx; tÞ ¼
X

n

X nðxÞTnðtÞ; X nðxÞ ¼ sin
npx

‘
;

Wðx; tÞ ¼
X

n

CnðxÞFnðtÞ;

uðx; tÞ ¼
X

n

ZnðxÞFnðtÞ; ð17Þ
Fig. 4. Dynamic influence lines of the beam’s midspan deformations w, u, and W for P ¼ 1500 kp, e ¼ 1:00m and five

values of the load velocity u as indicated: —, u ¼ 20m=s; ——, u ¼ 25m=s; - - -, u ¼ 20m=s; - -, u ¼ 35m=s; - -,

u ¼ 40m=s.
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the amplitudes Tn(t) and FnðtÞ, based on the preceding free vibration analysis, are found by
solving the following uncoupled differential equations:

€TnðtÞ þ o2
knTnðtÞ ¼

2P

m‘
sin

nput
‘

;

€FnðtÞ þ o2
snFðtÞ ¼

ePz

m
R ‘
0 Z2

n dx þYM

R ‘
0 C

2
n dx

CnðutÞ
ð18a;bÞ

which according to Duhamel yield purely analytical expressions, outlined below

TnðtÞ ¼
2Pz

m‘okn

Z t

0

sin
nput
‘

sinoknðt � tÞdt;

FnðtÞ ¼
ePz

osn m
R ‘
0 Z2

ndx þYM

R ‘
0 C

2
ndx

� �
Z t

0

CnðutÞ sinosnðt � tÞdt:
ð19a;bÞ
Fig. 5. As in Fig. 4 for e ¼ 2:00m.
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Fig. 6. Dynamic influence lines of the beam’s midspan deformations u and W for P ¼ 1500kp, u ¼ 20m=s and e ¼

1:00m (continuous line), 2.00m (dashed line).

Fig. 7. As in Fig. 6 for u ¼ 40m=s.

G.T. Michaltsos et al. / Journal of Sound and Vibration 280 (2005) 479–494488



ARTICLE IN PRESS

Fig. 8. Dynamic influence lines of the beam’s midspan deformations u and W for P ¼ 50000kp, e ¼ 1:00m and four

values of the load velocity u as indicated: —, u ¼ 10m=s; ——, u ¼ 15m=s; - -, u ¼ 20m=s; ??, u ¼ 25m=s.

Fig. 9. As in Fig. 8 for e ¼ 2:00m.

G.T. Michaltsos et al. / Journal of Sound and Vibration 280 (2005) 479–494 489
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At this point it should be noted that the same problem of forced vibration, if the moving load is
replaced by a two mass–spring vehicle model is quite complicated, since there exist no analytical
solutions and hence the employment of sophisticated numerical algorithms is required.
Theoretical aspects and solution techniques on the subject can be found in a recent publication
by the first two authors [27], but nevertheless the whole scientific matter remains open for further
in depth investigation, which will possibly include sophisticated vehicle models, damping and
more complicated multi-span bridge simulations.
3. Numerical results and discussion

3.1. Free vibrations—parametric study

Aiming to establish the influence of the most significant geometrical as well as cross-sectional
properties on the free lateral–torsional vibration characteristics of a steel beam representing a
commonly used double-lane simply supported highway bridge, the numerical results presented in
this section correspond to a structure possessing the following properties: ‘ ¼ 50m,
Jy ¼ 0:277m4, and zM ¼ 1:376m (distance between gravity centre S and shear center M. The
Fig. 10. Dynamic influence lines of the beam’s midspan deformations u and W for P ¼ 50000 kp, u ¼ 10m=s and

e ¼ 1:00m (continuous line), 2.00m (dashed line).
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remaining five (5) parameters, i.e. Jz, Jd, CM, m and YM are kept constant (and equal to certain
basic values) in groups of four, with the fifth one varying, and the three first torsional—out of
plane lateral circular frequencies osi ði ¼ 1; 2; 3Þ are computed.
The basic values mentioned earlier are :

Jz ¼ 1:654m4; Jd ¼ 6
 10�5 m4; CM ¼ 0:88m6; m ¼ 2512kpm=s2; and YM ¼ 1476:6 kp s2:

The results obtained are presented in graphical form throughout Fig. 3, for all five possible
combinations. From these plots it can be readily perceived that only the variation of Jz and CM

has a considerable effect on osi. More specifically, as Jz increases both os1 and os2 decrease to
about 9.50%, while the effect on os3 is negligible. Moreover, the increase of CM is associated with
increase of all osi, more pronounced on os1 and os2 (ffi5–7%) and less on os3 (�1%). On the
other hand, if m is varied from 2000 to 2740 kp/m all osi decrease from 1% to 5%, starting from
the higher mode. Finally, as YM increases, os1 and os2 both decrease to about 2%, while os3

decreases by 7%, while the effect of Jd on all three frequencies can be is insignificant.

3.2. Forced vibrations

In order to investigate the effect of eccentricity, moving load magnitude and velocity on the
forced vibration of the beam, the case of the structure dealt with in the free vibration analysis
section, containing all constant and basic parameter values is considered. Additionally, two
specific values of the moving load are adopted, a ‘‘light’’ one Pz ¼ 1500kp (representing a family
Fig. 11. As in Fig. 10 for u ¼ 25m=s.
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automobile) and a ‘‘heavy’’ one Pz ¼ 50000kp. The corresponding values of the load’s velocity
used in this study are u ¼ 20; 25; 30; 35 and40m=s for the light one and 10, 15, 20 and 25m/s for
the heavy one, while both loads are considered crossing the span of the beam through one lane, at
eccentricities e ¼ 1:00 or 2:00m.
Thereafter, the maximum midspan dynamic flexural (in-plane as well as out-of-plane)

deflections and the cross-section rotation are evaluated for all combinations of the foregoing
parameters chosen, and their values are comparatively presented in Table 1. Additionally, the
corresponding influence lines for characteristic loading combinations are presented. So, in Fig. 4
the influence lines of w, u, and W are presented for Pz ¼ 1500kp and e ¼ 1:00m, while in Fig. 5 the
same influence lines are presented but for e ¼ 2:00m. The influence lines of u, and W are presented
for nine characteristic loading combinations in Figs. 6–12.
In these plots x is the position within the span of the load that moves with the lowest velocity.

From the above results, in both tabular and graphical form, one may comprehensively discuss the
individual or combined (coupling) effect of the magnitudes of Pz, u and e on the dynamic
behaviour of the beam.
In doing this, it is evident that the increase of Pz affects both rotation and flexural deflections,

since the corresponding time functions (amplitudes), as given in relations (19) are proportional to
the loading. This is not the case for the eccentricity e, the variation of which affects only the
Fig. 12. Dynamic influence lines of the beam’s midspan deformations u and W for two values of the moving load

(P ¼ 1500kp: continuous line—P ¼ 50000 kp: dashed line) with e ¼ 1:00m and u ¼ 20m=s.
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coupled vibrations, i.e out-of-plane flexural and rotation, since its value appears only in Fn(t), as
given in Eq. (19b). Moreover, the increase of the load’s velocity results in an increase of all
deformations, and their maximum values occur for different load positions, depending on the
specific value of u. Finally, the worst combination of the parameters involved, associated with the
absolute maximum deformations, is the one of a heavy load traversing the beam with moderate
velocity and large eccentricity.
4. Conclusions

In this paper the combined flexural–torsional vibrations of simply supported two-lane steel
bridges with open monosymmetric cross-sections, traversed by a single vehicle across one lane are
studied, performing a linearized modal analysis on a beam with similar cross-section acted upon
eccentrically by a constant moving load with constant velocity. Based on the realistic examples
investigated, the following can be drawn:
(1)
 The coupled out-of-plane lateral–torsional free motions of the beam are significantly affected
primarily by the change of the strong-axis moment of inertia of the cross-section, and
secondarily by the change of the warping coefficient; the effect of the remaining cross-sectional
and geometrical properties on the free vibration characteristics of the beam can be considered
as negligible
(2)
 The corresponding forced vibrations are strongly affected by the magnitude of the moving
load, a fact valid for all deformations, while the eccentricity affects only the coupled motions.
The velocity of the moving load also has a considerable effect on the dynamic deflections and
rotations, with the worst combination of loading parameters being a heavy load traversing the
beam with moderate speed and large eccentricity.
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